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Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly
high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that
approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs
(circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types,
evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably,
circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular
sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription
and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental
methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This
review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions.
We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a
relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging
evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia,
bipolar disorder, major depressive disorder, Alzheimer’s disease, and Parkinson’s disease. These findings suggest that circRNAs may
provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
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INTRODUCTION
Unravelling the intricate genetic mechanisms underlying non-
coding RNA (ncRNA) biology has emerged as a promising frontier
for the development of new therapeutic and diagnostic tools for
neurological conditions. ncRNAs have gained significant attention
as evidence accumulates regarding their biochemical function-
ality, which was once underestimated [1–5]. Approximately 80% of
the human non-coding transcriptome is now predicted to be
biochemically active [1, 3, 6, 7]. A notable class of ncRNA are
circular RNAs (circRNAs) [8–14]. CircRNAs are highly stable,
covalently closed-looped, non-linear RNAs generated by circular-
izing back splicing events. Most circRNAs are derived from exonic
regions of protein-coding genes [8, 13]. Multiple circRNA isoforms
can arise from a single gene, depending on splicing processes
involved, with circRNAs transcribed from combinations of exons,
introns, intergenic, and untranslated regions [8, 13, 15]. These
transcripts are often co-transcriptionally generated with pre-
mRNA on the same strand and are known to compete with
mRNA for expression levels [9, 16]. While the majority of circRNAs
are derived from the nuclear genome, a subset has been identified
originating from the mitochondrial chromosome [17, 18].
Since circRNAs were first identified in 1976, they were largely

dismissed as “junk RNA”, with only a few being recognized as

biochemically functional, primarily in the context of viral biology
[19–21]. However, over the past decade, circRNAs have become an
area of high-impact research, with many circRNA transcripts
identified across species, from archaea to humans [22–24]. Many
circRNAs have high sequence conservation across different species,
and over 150,000 unique human circRNAs have been computa-
tionally identified, with a subset experimentally validated. CircRNAs
are expressed throughout the human body, displaying cell-type and
tissue-specific expression patterns. For example, distinct profiles
have been observed in neuronal cells such as dopaminergic
neurons, pyramidal neurons, and glia [25–27]. Furthermore,
circRNAs are predominantly expressed in the mammalian brain at
levels significantly higher than those in other tissues [26, 28, 29]. The
temporal expression of circRNAs appears to be dynamic during
early neuronal development and shows increased levels with age
[30–32]. Dysregulated circRNA expression has been reported across
various neurological conditions, often linked to altered physiologi-
cal processes and functional differences [27, 33–37]. In this review,
we focus on five conditions – schizophrenia, bipolar disorder, major
depressive disorder, Alzheimer’s disease, and Parkinson’s disease –
highlighting key findings from human and rodent studies to explore
recent discoveries in circRNA biology and their relevance to
neurological disorders.
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New advancements in molecular biology and computer science
have shed light on what was once considered a “junk” portion of
the genome. A wide range of ncRNAs has now been shown to
possess biochemical functionality, playing critical roles in cellular
processes such as transcriptional regulation [38, 39], post-
transcript processing [10, 14], protein expression [40–42], and
splicing regulation [9, 43]. While the full extent of their impact on
brain activity remains to be elucidated, ncRNAs, including
circRNAs, are proving to be invaluable tools for understanding
the etiology and pathophysiology of neurological conditions, as
well as potential candidates for clinical applications.

THE MOLECULAR PROPERTIES OF CIRCRNAS
The precise mechanisms of the biogenesis, transport, localization
and degradation of circRNAs remain largely unresolved. However,
current research indicates that human circRNAs are predominantly
composed of exonic regions (~60%), with most circRNAs
consisting entirely of protein-coding exons. Exonic circRNAs
originate from pre-mRNAs that first undergo canonical splicing
followed by backsplicing, and most are generated co-
transcriptionally in a spliceosome-dependent manner [44, 45].
Typically, these circRNAs consist of two or three exons, with
intervening introns excised during the splicing process [46]. In
addition to exonic circRNAs, they can also arise from other
genomic regions, including intronic-exonic, fully intronic, and
intergenic regions [47–49]. Beyond biogenesis, circRNA functions
are influenced by several molecular properties, including sub-
cellular transport and localization, degradation pathways, and
protein translation capacity, which are discussed in the following
sections.

Biogenesis
Several distinct mechanisms contribute to circRNA biogenesis
(Fig. 1A). Most circRNAs are generated through a process called
backsplicing, where the canonical 5′ and 3′ splice sites of a pre-
mRNA are joined in reverse orientation, forming a covalent 3–5′
phosphodiester bond [13, 50]. This process is tightly regulated by
trans-acting factors such as RNA binding proteins (RBPs), including
QKI (QKI, KH Domain Containing RNA Binding) [51] and NOVA2
(NOVA Alternative Splicing Regulator 2) [52], which dimerize,
causing increased proximity of splice sites through specific motifs
within the upstream and downstream intronic regions. Cis-acting
elements also play critical role in circRNA formation, for example,
flanking intronic base-pairing of reverse complementary
sequences (e.g. Alu elements [12]) located near the splice sites
can pair with one another, facilitating circRNA biogenesis through
a mechanism similar to the interaction between RBPs.
Adenosine deaminases acting on RNA (ADARs) play an

important role in circRNA biogenesis by editing RNA through
adenosine to inosine (A-to-I) conversions. This editing is guided by
the base-pairing of reverse complementary sequences, which
modulates the stability of RNA secondary structures. By altering
these structures, ADARs regulate the accessibility of regulatory
RBPs, thereby either reducing or enhancing back-splicing events
[53, 54]. In addition, the spliceosome machinery is thought to
directly participate in circRNA formation, akin to canonical
splicing, although the precise mechanisms remain to be fully
elucidated [9, 13, 50]. In the intron lariat-driven circularization
model, an internal backsplicing event occurs after exon skipping,
producing a mRNA that lacks the skipped exons and a circRNA can
be formed if the lariat structure escapes debranching. Sequence
elements such as a 7-nucleotide GU motif and an 11-nucleotide C-
rich sequence near the 5′ splice sites protect the lariat from
degradation by debranching enzymes (e.g. Debranching RNA
Lariats 1, DBR1), promoting circRNA formation [47, 55]. Moreover,
N6-methyladenosine (m6A) RNA modification, which are known to
regulate various aspects of RNA metabolism, including splicing,

stability, and translation, have also been implicated in circRNA
biogenesis. Specifically, m6A-modified exons located near the start
and stop codons of mRNAs can undergo backsplicing mediated by
the nuclear m6A reader protein YTHDC1 (YTH N6-Methyladenosine
RNA Binding Protein C1) [56–58].

Subcellular transport and localization
Since circRNAs are generated in the nucleus and found across
various subcellular compartments, with exon-containing circRNAs
predominantly localized in the cytoplasm [12, 59, 60], their nuclear
export is likely to follow a tightly regulated process. Multiple
mechanisms involving RBPs, export receptors, and RNA helicases
facilitate circRNA nuclear export (Fig. 1B). The primary mechanism
of circRNA nuclear export relies on Ran-GTP binding export
receptors [61, 62] which transport circRNAs through the nuclear
pore complex. In mammalians, exportin-2 (XPO2) plays a key role,
exporting approximately 80% of the most abundantly expressed
circRNAs [62]. Another important exportin, exportin-4 (XPO4), is
responsible for transporting a distinct subset of exonic circRNAs,
which are highly expressed in brain tissues [61].
In addition to Ran-GTP-dependent exportins, length-dependent

mechanisms involving RNA helicases have been identified.
DDX39A (DExD-Box Helicase 39 A) and DDX39B (DExD-Box Heli-
case 39 B) are required for the export of short (less than 700nt)
and long circRNAs (greater than 800nt), respectively. This length-
dependent export mechanism has been observed across metazo-
ans, suggesting it is evolutionarily conserved [63, 64]. Interestingly,
canonical mRNA export factors, such as NXF1 (Nuclear Export
Factor 1), ALYREF (ALY/REF Export Factor), and GANP (Germinal
Center-Associated Nuclear Protein), have minimal involvement in
circRNA export [62]. This highlights the distinct nature of circRNA
export pathways, which are mechanistically different from those
of linear RNAs. Nonetheless, the NXF1-NXT1 pathway, a known
mRNA export system, has been implicated in transporting GC-rich
intronic circRNAs, demonstrating the diversity and complexity of
circRNA export mechanisms [65].
Moreover, RNA methylation, particularly N6-methyladenosine

(m6A), plays an important role in circRNA export. The nuclear
protein YTHDC1, which also participates in the m6A-dependent
biogenesis of specific circRNA subsets [56–58], mediates the
export of m6A-modified circRNAs, including circNSUN2 [66] and
circRNA3634 [67]. However, not all m6A -modified circRNAs rely on
YTHDC1 for export. For instance, circ-ZNF609 biogenesis is
reduced following YTHDC1 knockdown, but its export and stability
remain unaffected [57], indicating the involvement of alternative
mechanisms in the export of m6A -modified circRNAs.
CircRNAs have also been identified in exosomes [68–73], a class

of extracellular vesicles that originate from intraluminal vesicles
within multivesicular endosomes. Exosomes play key roles in
intercellular communication, often transporting RNAs, proteins
and lipids [74, 75]. Interestingly, circRNAs are enriched in
exosomes relative to their abundance in the cells of origin,
indicating selective transport into exosomes [69]. Although
research on exosomal circRNAs is still emerging, most evidence
so far comes from studies in cancer and immunology. Several
possible mechanisms have been proposed for the selective
packaging of circRNAs into exosomes, such as RBP recognition
of specific binding sequences [76–78] resembling the selective
export of small RNAs [79–81]. Other potential mechanisms involve
long non-coding RNAs (lncRNAs) [82], microRNAs (miRNAs) [69], or
circRNAs [70] size as determinants of selective transport. However,
the exact pathways by which circRNAs are selectively transported
into exosomes remains unclear.
Despite the progress made in understanding circRNA transport

and subcellular localization, many questions remain to be
resolved. The involvement of additional RNA export-related factors
is still unclear, and it is likely that future research will identify new
pathways or proteins contributing to the transport of specific
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circRNA subsets. Furthermore, specialized transport mechanism or
tissue-specific factors may play essential roles in organs such as
the brain, where circRNAs are highly expressed and found in
neurites and synaptosomes [29, 83, 84].

Stability and degradation
The covalently closed-loop structure of circRNAs, which lacks free
5′ and 3′ ends, makes them significantly more stable and resistant
to degradation by exonucleases compared to their linear counter-
parts [85]. In mammalian cells, most circRNAs have a half-life of
18.8–23.7 h, making them stable for at least 2.5 times longer than
linear RNAs, which have a half-life of 4.0–7.4 h [86]. This extended
half-life suggests that the circRNA decay machinery differs
substantially from that of linear RNA, with several molecular
properties affecting circRNA stability and degradation, including
endonuclease activity mediated by miRNA binding, secondary
structure, RNA-DNA duplexes, and m6A modification (Fig. 1C).
CircRNAs can be degraded through endonucleases via RNA

interference (RNAi) pathways. The Argonaute-2 (AGO2) endonu-
clease, guided by miRNA, has been implicated in circRNA
degradation. For instance, miR-1224 binds to the precursor
circRNA-filip1l in the nucleus of mice spinal cord neurons,
reducing circRNA-filip1l expression in an AGO2-dependent man-
ner [87]. Another example is miR-671, which directs AGO2-
mediated cleavage of the circular transcript from the long
intergenic non-protein coding RNA 632 gene (circLINC00632 also
known as circCDR1as) [88], a process that plays an important role

in brain function [89]. Additionally, GW182 (Trinucleotide Repeat
Containing Adaptor 6 A, TNRC6A), a key component of the RNAi
pathway, is involved in the degradation of circRNAs via RNAi
machinery-independent pathways [90].
Highly structured circRNAs can be degraded by RBP complexes.

For example, the UPF1 RNA helicase unwinds circRNA secondary
structures, enabling degradation by the endonuclease G3BP1
(G3BP Stress Granule Assembly Factor 1) [91]. Some circRNAs, such
as ci-ankrd52, can form DNA:RNA hybrids at their transcription
sites which maintains an open secondary structure forming a
stable R-loop with the template DNA that is recognized and
degraded by RNase H1 [92]. Moreover, during viral infections,
circRNAs forming 16–26 bp RNA duplexes can be cleaved by
RNase L, an endonuclease activated in response to viral infection.
This degradation is necessary to activate PKR, a double stranded
RNA-activated protein kinase, which limits viral and host protein
synthesis [93–95]. CircRNAs with m6A modifications are targeted
for degradation by the RNase-P/MRP complex. This process
requires HRSP12 (Reactive Intermediate Imine Deaminase A
Homolog, RIDA), which acts as a bridge between the m6A reader
protein YTHDF2 (YTH N6-Methyladenosine RNA Binding Protein
F2) and RNase-P/MRP, facilitating the rapid decay of m6A-modified
circRNAs [96, 97].
Currently, there is no evidence for a canonical degradation

pathway specific to circRNAs. The available research suggests that
multiple cellular pathways, some of which are shared with linear
RNAs, contribute to circRNA degradation. However, the relative

Fig. 1 CircRNA biogenesis, molecular properties, and degradation pathways. (A) CircRNA biogenesis is predominantly explained by two
proposed models: (1) direct backsplicing, facilitated by binding sites recognized by RNA binding proteins (RBPs) or inverted repeat elements
that bring splice sites into close proximity; and (2) the lariat-driven circularization model, where exon skipping generates a lariat structure that
is subsequently processed into an intron-driven circularization. BSS backsplicing sites. (B) The nuclear export of circRNAs is dependent on their
length, methylation status, sequence origin, and interactions with nuclear proteins. Transport into extracellular spaces is mediated by selective
exosomal transport, which may operate through mechanisms unique to circRNAs, distinct from those of other cellular components.
(C) CircRNA degradation involves several pathways, including those mediated by RNA interference (RNAi), endoribonucleases (RNAses), and
structural features of circRNAs.
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importance of these pathways and whether novel mechanisms
exclusive to circRNAs exist, remain to be fully elucidated. Further
research is needed to uncover the dominant mechanisms
underlying circRNA stability and decay.

THE MECHANISMS OF ACTION OF CIRCRNAS
microRNA sponge
MiRNA sponging is a well-known function of circRNA (Fig. 2A), in
which circRNAs sequester miRNAs through complementary
binding sequences, reducing their bioavailability. This sponging
activity inhibits miRNA-mediated gene silencing by preventing
miRNAs from binding to their target mRNA transcripts. Typically,
miRNAs form complexes with AGO2, and their seed region (a
conserved 2–8 nucleotide sequence) binds to the 3′ UTRs of
mRNAs, leading to degradation of mRNA transcripts containing
complementary miRNA response elements [98, 99].
One of the most prominent examples of miRNA sponging is

circCDR1as, which contains over 60 conserved binding sites for
miR-7 [100, 101]. This large number of binding sites and high
expression relative to most circRNAs, enables circCDR1as to tightly
regulate miR-7 availability, potentially affecting the expression of
several target genes. Dysregulation of miR-7 has been shown to
impair the development and function of the brain and pancreas
[102, 103] and is also implicated in Parkinson’s disease through
dysregulation of α-synuclein expression [104]. In line with this,
abnormal expression of circCDR1as has been found to play
important roles in brain development [101], insulin production
and secretion [39], as well as in promoting cell proliferation and
metastasis in cancers such as nasopharyngeal carcinoma [105],
osteosarcoma [106], and melanoma [107].
Several other instances of miRNA sponging have been

identified, suggesting that circRNAs may act as miRNA decoys,
representing a key regulatory mechanism. For example, the testis-
specific circRNA sex-determining region Y (circSry) functions as a

sponge for miR-138, though the functional impact remains to be
determined [100]. CircNRIP1 acts as a decoy for miR-149, and is
transmitted between gastric cancer cells via exosomes, where it
affects the AKT1/mTOR pathway to promote tumor metastasis
[108]. In bladder cancer, circHIPK3 contains two binding sites for
miR-558, where sponging of miR-558 suppresses heparinase
(HPSE) expression [109].
As research into circRNA sponging continues to grow, it is

becoming increasingly evident that this mechanism plays a crucial
role in cancer and stem cell biology [110, 111]. However, much
remains to be uncovered, particularly in the context of brain
development, neurological function and diseases.

Protein translation
In eukaryotes, mRNA translation typically depends on chemical
modifications at both the 5′ and 3′ ends of linear RNAs, which
enhance stability, facilitate transport, and promote protein
synthesis. The 5′ end is capped with a methylated guanosine
(m7G), connected to the mRNA via a 5′–5′ triphosphate bridge,
while the 3′ end is polyadenylated, forming a poly(A) tail required
for efficient protein translation [112–114]. However, some mRNAs
can undergo cap-independent translation via internal ribosome
entry sites (IRES), enabling protein synthesis without the need for
a 5′ cap and 3′ poly(A) tail [115]. Given their covalently closed-
loops structure, circRNAs lack 5′ and 3′ ends, making cap-
independent translation the only feasible mechanism (Fig. 2B).
Nearly four decades ago, circRNA translation was first observed

in the human hepatitis delta virus, where a circRNA containing an
open reading frame (ORF) with start and stop codons directed the
synthesis of a 215-amino-acid protein [116]. Subsequent studies in
the mouse testis-determining gene Sry provided further evidence
of circRNA translation [117]. Later research demonstrated that
synthetic circRNA with an IRES can indeed be translated in vitro
[118]. More recently, naturally occurring circRNA translation has
been confirmed in vivo [119–121]. Systematic approaches

Fig. 2 Diagram summarizing mechanisms of actions and functions of circRNAs. (A) One of the most extensively studied functions of
circRNAs is miRNA sponging, where circRNAs bind to complementary miRNA binding sites, sequestering miRNAs and reducing their inhibitory
effect on target mRNAs. (B) CircRNAs can encode functional peptides through m7G cap-independent translation mechanisms, facilitated by
internal ribosome entry sites (IRES) or N6-methyladenosine (m6A) modifications. (C) CircRNAs regulate transcription by interacting with
transcriptional factors or spliceosome components. (D) Many circRNAs contain binding sites for RNA binding proteins (RBPs), regulating the
localization, stability, or activity of these proteins. (E) CircRNAs can act as scaffolds in protein-protein interactions, binding to multiple proteins
simultaneously to facilitate their functional interplay. (F) CircRNAs are often co-transcriptionally produced with mRNAs from the same host
gene, competing with linear transcripts for splicing events, thereby interfering with the expression of their cognate mRNAs.
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combining polysome profiling, non-poly(A)-selected RNA sequen-
cing, and bioinformatics revealed robust evidence of endogenous
circRNA translation in human cells [122–124].
Several cap-independent mechanisms have been identified for

circRNA translation, including IRES-dependent [122–125], short
IRES-like A/U-rich sequences [126], m6A IRES (MIRES)-dependent
[127, 128], and rolling circle translation (RCA)-dependent transla-
tion [119]. However, the precise mechanisms by which ribosomal
subunits and translation initiation factors assemble during circRNA
cap-independent translation remains unclear. Recent studies
suggest that combinatorial interactions between different RBPs
and components of the elF4 and elF3 complexes are crucial for the
regulation of cap-independent translation [127–131].
Our current understanding of the abundance and functional

roles of circRNA-derived proteins remains limited, but emerging
evidence indicates that these circRNA-derived proteins play key
roles in normal development and may be implicated in various
diseases. For instance, in fruit flies, a circRNA from the muscleblind
locus (circMbl) generates a peptide under starvation conditions,
which localizes to synaptosome fractions in fly heads. The absence
of identifiable peptide signal sequences in the proteins encoded
by both the Mbl mRNA and circMbl suggests that translation may
occur locally at the synapses [124]. Another fruit fly circRNA,
derived from the sulfateless (sfl) gene (circSfl), produces a small
protein regulated by insulin-mediated lifespan extension and
aging, potentially linking circSfl-derived protein to lifespan
regulation [132].
In humans, a circRNA derived from the amyloid β precursor

protein (APP) gene, known as circAβ-a, can be translated into a
novel Aβ-containing polypeptide in the brains of both Alzheimer’s
disease patients and non-dementia individuals. While no evidence
currently links the circAβ-a-derived protein to dementia, this
discovery suggests an alternative pathway for Aβ biogenesis,
which could help explain sporadic cases of the disease [126].
Other circRNA-derived proteins have primarily been associated
with cancers [122–124, 127, 133]. Given that approximately 24% of
mammalian circRNAs contain 3′ and/or 5′ UTRs [59], it is likely that
many circRNA-derived proteins will be identified in future studies.

Transcriptional regulation
CircRNAs can regulate gene transcription through various
mechanisms. Some circRNAs interact directly with components
of the RNA Polymerase II (Pol II) complex, acting as either positive
or negative transcriptional regulators (Fig. 2C). For instance, a
recent study demonstrated that metal-responsive element-con-
taining circRNAs inhibit the transcription of copper stress-
responsive genes by blocking the recruitment of gawky, a
chromatin-interacting RBP, to active chromatin regions. This
blockage leads to aberrant cytoplasmic accumulation of gawky,
thus disrupting gene transcription [134].
Certain nuclear intronic circRNAs, such as ci-ankrd52, accumu-

late at their transcription sites, where they serve as positive
regulators of their parental gene by association with Pol II complex
[47]. Similarly, exon-intron circRNAs like circEIF3J and circPAIP2
have been shown to regulate Pol II transcription by forming RNA-
RNA interactions with U1 small nuclear ribonucleoprotein
(U1 snRNP), thereby modulating the transcription of their parental
genes [38]. Another example is circHuR, which represses
transcription of its parental gene, human antigen R (HuR), by
directly interacting with CCHC-type zinc finger nucleic acid
binding protein (CNBP). This interaction prevents CNBP from
binding to the HuR promoter, consequently suppressing HuR
transcription and inhibiting gastric cancer progression [135].
CircRNAs can also activate parental gene transcription through

mechanisms involving intronic enhancers [136] or promoter
methylation [137]. For example, in fruit flies, a maternally inherited
intronic circRNA (sisR-4) activates an enhancer located within the
intron of its parental deadpan (dpn) gene, which is essential for the

regulation of zygotic gene expression during embryogenesis
[136]. Similarly, a FLI1 exonic circRNA (FECR1) binds to the FLI1
promoter and recruits TET1 (Tet Methylcytosine Dioxygenase 1) to
induce DNA demethylation at a CpG island in the FLI1 promoter.
This epigenetic modification enables FLI1 to drive metastasis in
breast cancer by leveraging both canonical oncogenic pathways
and epigenetic regulation via FECR1 [137]. In addition to their
nuclear roles in transcriptional regulation, several cytoplasmic
circRNAs have been found to regulate the expression of
transcription factors primarily by sponging miRNAs that target
specific transcription factors [138–140].

RNA binding protein transport, scaffold, and decoy
Several studies suggest that a subset of circRNAs may play critical
roles in transporting RBPs to specific subcellular locations,
facilitating the assembly of protein-RNA and enzyme-substrate
complexes, as well as acting as protein decoys or sponges
(Fig. 2D). These mechanisms are closely linked to various aspects
of circRNA biogenesis, localization, stability and degradation
[50, 51, 141, 142]. CircRNAs can act as mediators in biochemical
pathways, selectively transporting, scaffolding, or sponging
molecules, thus forming complex regulatory networks (Fig. 2E).
These overlapping mechanisms converge to produce context-
specific functional outputs in diverse cellular processes.
For example, in colorectal cancer, the upregulation of circYAP1

is linked to a reduction in immune activation against cancer cells.
CircYAP1 binds directly to the YAP1 (yes1 associated transcrip-
tional regulator) protein, preventing its phosphorylation which
enhances YAP1 nuclear import, where interactions with transcrip-
tion factor 4 (TCF4) promotes the expression of the immune
checkpoint inhibitor PD-L1 (CD274), leading to immune evasion
and tumor progression [143]. Similarly, circAMOTL1, which is
highly expressed in neonatal human cardiac tissue, promotes AKT-
mediated cardiomyocyte survival and repair. Research indicates
that circAMOTL1 binds to both PDK1 (pyruvate dehydrogenase
kinase 1) and AKT1 (AKT serine/threonine kinase 1), enhancing
AKT1 phosphorylation and facilitating the nuclear translocation of
pAKT1, thereby promoting cardioprotective effects [144]. In
glioblastoma, reduced miRNA abundance compared to normal
brain tissue has been associated with an aberrant nuclear
localization of DICER1 (dicer 1 ribonuclease III, a crucial
endonuclease for miRNA maturation). This mislocalization could
be mediated by its interaction with RNA Binding Motif Protein 3
(RBM3) and circ2082, one of the most upregulated circRNAs in
glioblastoma cells [145]
CircRNAs also act as scaffolds or recruiters to modulate protein

degradation. In hepatocellular carcinoma, circPABPC1 directly links
integrin subunit beta 1 (ITGB1) to the 26S proteasome for
degradation in a ubiquitination-independent manner [146]. In
breast carcinoma, circDNMT1 expression is increased and binds to
the RBP AUF1 (HNRNPD, heterogeneous nuclear ribonucleoprotein
D) and the transcription factor TP53 (tumor protein P53),
promoting nuclear translocation of both proteins, which enhances
cell proliferation and inhibits of senescence [147]. In non-cancer
mouse cells, circFoxo3 binds to the cell cycle-associated proteins
CDK2 (cyclin dependent kinase 2) and p21 (CDKN1A, cyclin
dependent kinase inhibitor 1A), reducing the formation of cyclin
E/CDK2 complexes, thereby blocking the G1 to S phase transition
in the cell cycle [148].

Competition between linear and circular RNA expression
CircRNAs are co-transcriptionally produced with their cognate
mRNAs and can act as transcript regulators affecting the
expression of their linear counterparts (Fig. 2F). Investigations
into this competitive dynamic have revealed that the balance
between circular and linear RNA production can significantly
impact gene expression and function. One notable example
involves circMbl and its cognate mRNA. The biogenesis of circMbl
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is tightly regulated by a splicing factor encoded by themuscleblind
(Mbl) gene that binds to specific sites in the flanking introns of
circMbl. This interaction establishes a feedback loop, as circMbl
directly binds to MBL protein, modulating its availability and
consequently controlling its own production. This mechanism
exemplifies how circRNA can act as a regulator of its associated
splicing factor, maintaining cellular homeostasis [9].
Recent findings have introduced a novel mechanism by which

circRNAs can regulate mRNA stability. CircRNAs that bind both the
exon junction complex (EJC) and the 3′ UTR of mRNAs have been
shown to induce degradation of the bound mRNA. This process
resembles the canonical nonsense-mediated decay (NMD) and
relies on EJC binding downstream of termination codons and
NMD factors such as PNRC2 (Proline Rich Nuclear Receptor
Coactivator 2), UPF1 (UPF1 RNA Helicase and ATPas) and UPF2
(UPF2 Regulator of Nonsense Mediated mRNA Decay). In the
circRNA-mediated pathway, circRNAs tethered to the 3′ UTR bring
EJCs into proximity, facilitating mRNA degradation through an
NMD-like mechanism. The efficiency of this process depends on
the number and location of circRNA-mRNA binding sites,
illustrating the complexity of circRNA-mediated regulation [149].
Another interesting case is circHOMER1, which has strong

sequence complementarity to the 3′ UTR of HOMER1B mRNA
isoform. Reduced expression of circHOMER1 has been linked to
increased HOMER1B expression, suggesting a regulatory interplay
between circular and cognate linear RNA. The RBP ELAVL4 binds
to sites near the complementary regions on both the circHOMER1
and the HOMER1B 3′ UTR, suggesting the role of circHOMER1 in
regulating linear HOMER1B expression [150].

COMPUTATIONAL IDENTIFICATION OF CIRCRNAS
Recent advances in understanding circRNA biogenesis and their
roles in various pathological and physiological contexts have
driven the development of bioinformatic tools for circRNAs
analysis [43, 151]. Over three million unique circRNA transcripts
across multiple species have been catalogued, with online
databases such as circBase [152], circBank [153], CIRCpediav2
[154], and circAtlas3 [155], available for reporting and comparison.
These resources provide comprehensive information including
associated studies, cell types, chromosome coordinates, predicted
splice sites, RNA-binding proteins sites, and miRNA binding sites.
Specialized resources like NeuroCirc, which focuses on circRNAs in
the human brain [156], are particularly useful for researchers
studying neuronal tissues.
The main strategy for identifying circRNAs from short-read RNA

sequencing data relies on detecting backsplice junctions (BSJs).
Given that circRNAs lack a poly(A) tail, cDNA library preparation
methods must avoid poly(A) selection. Instead, these methods
typically involve ribosomal RNA depletion followed by cDNA
synthesis that captures both coding and non-coding RNAs,
including circRNA molecules. To date, all computational tools for
circRNA identification rely on initial experimental evidence from
RNA-seq data, with fully de novo computational methods based
solely on genomic features yet to be developed. Current
computational approaches to circRNA identification are divided
into two main strategies: pseudo-reference-based and chimeric-
read-based [157, 158].
Pseudo-reference-based methods use existing gene annotation

data to create BSJ references, which can limit discovery in less-
studied cell types or species. Notable pseudo-reference-based
tools include Circall [159], NCLscan [160], and KNIFE [161]. For
example, Circall [159] implements a two-step pseudo-reference
approach: it first maps RNA-seq reads to an annotated reference
transcriptome to remove linear RNA reads, then aligns the
remaining unmapped reads to a BSJ reference database. This
database is constructed from annotated RNA sequences, creating
pseudo-sequences for circRNAs and their tandem counterparts by

combining sequences from constituent exons. To reduce false
positives, Circall applies a two-dimensional local false discovery
rate (2dFDR) method [162], which accounts for both BSJ-
supporting reads and circRNA length. Chimeric-read-based
methods align sequencing reads directly to a reference genome,
using noncolinear or chimeric reads to detect BSJs. For instance,
circRNA_finder [11] utilizes the chimeric alignment output from
STAR program [163] to identify chimeric junctions on the same
chromosome flanked by canonical donor-acceptor splice sites (GT
—AG). Other chimeric alignment tools include CIRI2 [164], DCC
[165] and CIRCexplorer3 [166]. In the case of CIRI2 [164], it reports
BSJ mapped reads from alignments using BWA-MEM program
[167].
There is currently no single “gold standard” toolkit for circRNA

identification [168, 169], and combining multiple detection
methods often enhances accuracy. A notable evaluation of 16
circRNA detection tools identified over 3,15,000 unique circRNAs,
with 1516 validated experimentally by RT-qPCR, demonstrating
the value of a consensus approach [169]. Examples of multi-tool
platforms include SRCP [170], CirComPara2 [171] and nf-core/
circRNA [172]. Long-read sequencing platforms, such as Oxford
Nanopore Technology, have recently advanced circRNA identifica-
tion [173] by enabling full circRNA transcript coverage and
detection of isoforms [174] as well as native RNA modifications
[175]. Unlike short-read sequencing, which limits full transcript
identification and quantification, long-read sequencing technolo-
gies provide a clearer picture of co-regulated transcripts and
insights into splicing processes [176].
To investigate miRNA sponging potential, traditional miRNA

target prediction tools like miRanda [177], TargetScan [178], and
RNAhybrid [179] have been repurposed for circRNA-miRNA
interaction prediction [41, 155, 180]. For circRNA-RBP interaction
prediction, tools like catRAPID omics v2.0 integrate experimentally
validated RNA-binding proteins using motifs collected from
multiple databases [181]. Additional resources for circRNA-RBP
interaction prediction include CircSSNN [182], CRAFT [183],
CircInteractome [41], CircSite [184], and circAtlas [155]. For
predicting the protein-coding potential of circRNAs, CircProPlus
employs unsupervised learning algorithm and logistic regression
model based on open reading frame (ORF) characteristics such as
ORF size and coverage [185]. Other useful tools include cirCodAn
[186], C2CDB [187], CRAFT [183] and circRNADb [188]. Visualization
tools such as CIRI-vis [189] and circView [190] further support the
analysis of splicing patterns, regulatory elements, and miRNA/RBP
binding sites, advancing our understanding of circRNA function-
ality and complexity.

EXPERIMENTAL VALIDATION AND CHARACTERIZATION OF
CIRCRNAS
Identifying circRNAs in RNA-seq data is a valuable initial step in
selecting candidates for further experimental validation and
characterization. Quantitative reverse transcriptase polymerase
chain reaction (qRT-PCR) remains one of the most widely used
methods for analyzing circRNA candidates [169, 191–193]. This
approach uses divergent primers specifically designed to amplify
BSJs with primer design principles akin to mRNAs, however it is
also essential to know the candidate BSJ sequence and its flanking
regions. Tools such as circPrimer2 [194] and CircInteractome [41]
assist with primer design for known BSJs. For novel circRNA
candidates not catalogued in public databases, general-purpose
tools like Primer3 [195] can be used by providing a sequence
spanning the BSJ to generate divergent primers and predict
amplicon sizes. Sanger sequencing also serves to confirm back-
splice junctions via PCR with divergent primers targeting
candidate circRNAs [196, 197].
Northern blotting is a commonly used method for circRNA

validation. Probes are designed to target BSJs via hybridization
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with complementary RNA sequences that are separated by size in
an electrophoresis assay [29, 45, 46, 85, 100, 101]. Additionally,
treatment with the 3–5′ exonuclease RNase R can enrich circRNA
levels by selectively digesting linear RNAs, which is beneficial prior
to RNA-seq, qRT-PCR, and northern blot experiments, as circRNAs
are often expressed at low levels [10, 193, 198]. Nonetheless,
highly structured regions in linear RNA may block RNase R
digestion, potentially confounding this interpretation [198].
Given that circRNAs are often significantly less abundant than

their linear cognate RNAs, determining their subcellular localiza-
tion is crucial for understanding their potential function [94, 199].
The quantification of circRNAs by qRT-PCR in different cellular
fractions such as the nucleus [47], ribosomes [199], mitochondria
[17], and exosomes [69, 70] can reveal clues about their roles,
providing hypotheses for further characterization. However,
subcellular fractionation techniques may suffer from purity issues
and potential contamination. RNA fluorescence in situ hybridiza-
tion (FISH) using antisense probes targeting the BSJs offers a more
precise method for single-cell localization. Despite the high
accuracy, detecting circRNAs by FISH can be challenging due to
their low abundance, complex secondary structures, or protein
interactions at the BSJ. Once circRNAs are validated and their
subcellular localization determined, appropriate experimental
approaches can be selected for further characterization. For
instance, nuclear circRNAs are most likely almost all non-protein-
coding and may serve regulatory roles, cytoplasmic circRNAs have
been shown to function as miRNA sponges, RBP transporters, or
scaffolds while ribosome-associated circRNAs may indicate
potential translation into peptides.
To further investigate the functional role of circRNAs, modula-

tion of their expression through knockdown, knockout or over-
expression assays provides valuable functional information.
Specifically, for loss-of-function studies, circRNAs can be knocked
down via small hairpin RNA (shRNA), small interfering RNA (siRNA)
[200, 201], or CRISPR-Cas13 [199, 202] targeting the BSJs. Yet,
effective circRNA depletion without disrupting their linear RNA
counterparts remains a major challenge, as circRNAs are
predominantly derived from protein-coding genes. In cases where
circRNAs lack a cognate linear RNA [89], are formed by intronic
complementary sequences [85, 203, 204] or specific RBP binding
sites, knockout approaches may be more feasible. CircRNA
overexpression can also elucidate their functional roles, via
strategies such as expression vector construction with circRNA-
producing exons and their flanking introns [46, 70, 100, 205, 206]
or transfecting cells with synthetic circRNAs generated through
in vitro transcription and circularization [207–209]. A thorough
discussion of all available validation and characterization methods
and their limitations is beyond the scope of this review; therefore,
we recommend several comprehensive studies for greater
comprehension [8, 210, 211].

CIRCRNAS IN THE BRAIN AND NEUROLOGICAL CONDITIONS
The current literature extensively demonstrates new mechanisms
and functional roles of circRNAs in cancer biology. However,
evidence regarding the mechanism of circRNAs in specific brain
cells and human neurological disorders remains limited. Never-
theless, compelling findings highlight the critical importance of
RNA splicing in brain development and disease [212, 213], with
growing research suggesting circRNAs as an essential regulatory
layer in neuronal tissue and associated disorders
[26, 28, 29, 83, 84, 214]. Studies have consistently shown that
circRNA expression levels in the brain are significantly higher than
in other tissues, a pattern observed across various species,
including humans [29], mice [84], rats [215], and fruit flies [11].
CircRNAs are not only highly abundant in the brain

[28, 29, 156, 216] but also present a dynamic range of expression
across cell types, development stages, and aging [11, 26, 215, 217].

In neurons, genes encoding synaptic proteins tend to produce
more circRNAs, many of which are enriched in the synaptosome,
suggesting potential roles in neuronal differentiation, synaptic
function, and plasticity [26, 83, 84, 218]. CircRNAs accumulate in
the central nervous system with age [11, 32, 215, 217, 219],
potentially contributing to cell senescence and age-related
neurological disorders [32, 217, 219]. Dysregulation of circRNA
expression and function has been implicated in several neurolo-
gical disorders, with much of this research emerging over the past
decade [26, 214, 220–223]. Despite these advances, the precise
roles of circRNAs in the pathology of neuropsychiatric and
neurodegeneration disorders remain poorly understood.
This review focuses on three neuropsychiatric disorders

(schizophrenia, bipolar disorder, and major depressive disorder)
and two neurodegenerative diseases (Alzheimer’s disease and
Parkinson’s disease), summarizing what is currently known about
circRNAs in these conditions. Table 1 presents a concise overview
of key findings with some experimental evidence provided in
relevant published studies on human circRNAs, which are further
explored in the following sections.

Schizophrenia
Schizophrenia is a complex polygenic neurological disorders
characterized by a spectrum of symptoms [224, 225]. The disorder
typically manifests between the ages of 16 and 30, with an earlier
onset and higher prevalence in males compared to females
[224, 226, 227]. Symptoms include hallucinations, delusions,
impaired emotional expression, and disorganized speech
[224, 227, 228]. A recent genome-wide association study (GWAS)
identified 287 genomic loci associated with schizophrenia with at
least 600 genes potentially implicated in schizophrenia [229], in
which the majority of genetic variants occurred in non-coding
regulatory regions of the genome [229, 230], highlighting the
importance of the non-coding genome in understanding complex
disorders like schizophrenia. Investigating the role of circRNAs in
schizophrenia offers a promising perspective on how non-coding
RNAs may contribute to disease pathophysiology [26, 231].
Although the research field is still in its early stages, studies have
reported altered circRNA expression in both peripheral blood
samples [232–235] and postmortem brain tissues [223, 236, 237]
from schizophrenia patients.
CircRNAs in blood cells are particularly intriguing as potential

biomarkers or therapeutic targets; For example, one study found
22 differentially expressed circRNAs, with 14 downregulated and 8
upregulated in disease [234]. Another study reported 13 down-
regulated circRNAs compared to healthy controls [235]. In early-
onset schizophrenia patients, circRNA expression was dramatically
reduced, with 234 downregulated circRNAs and one upregulated
[232]. Conversely, a smaller cohort study reported 392 upregu-
lated and 58 downregulated circRNAs in schizophrenia patients
compared to controls [233]. There is no overlap for genes reported
in these studies which underscores the challenges of biomarker
discovery in schizophrenia.
In postmortem brain tissue, particularly the dorsolateral

prefrontal cortex (DLPFC), circRNA expression is significantly
reduced in schizophrenia patients compared to controls. A recent
study identified 574 differentially expressed circRNAs, with 184
upregulated and 390 downregulated [236]. The authors proposed
that schizophrenia involves dysregulated circRNA biogenesis,
characterized by a global reduction in circRNA levels in patients’
brains. Another study found 203 differentially expressed circRNAs
in the DLPFC of patients, of which 182 (90%) were downregulated
[237]. These findings support the hypothesis proposed by
Mahmoudi et al. [236]. This reduction may increase the bioavail-
ability of miRNAs, amplifying their inhibitory effects on target
mRNAs and dysregulating protein expression (Fig. 3A). Two key
RBPs involved in circRNA biogenesis, ADAR1 and QKI, exhibit
distinct expression patterns in schizophrenia patients [238, 239],
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suggesting their potential involvement in impaired circRNA
production. Additionally, schizophrenia-associated genetic var-
iants in intronic regions may disrupt canonical splicing sites or
complementary sequences required to form secondary structures
in intronic stem-loops, which are critical for circRNA circularization
[240]. Despite these findings, the precise mechanisms underlying
this disruption in circRNA biogenesis and its downstream
functional consequences contributing to disease remains largely
unknown.
In reviewing the published data [236, 237], it was revealed that

circRNAs derived from 32 genes were consistently reduced in

DLPFC of schizophrenia patients. These circRNAs are derived from
genes implicated in key neuronal processes, such as synapse
assembly and transmission (NRXN1, STAU2, SV2B), synaptic vesicle
exocytosis (SV2B, STXBP5), axon regeneration (BRAF, IGF1R), and
insulin-like receptor signaling pathway (RABGAP1, IGF1R). The
reduced levels of circRNAs decrease their miRNA sponging
efficiency, in turn increasing bioavailable miRNAs that more
effectively bind to target mRNAs, thereby repressing protein
expression of genes involved in multiple biological pathways.
Beyond serving as miRNA decoys, dysregulated circRNAs in
schizophrenia may disrupt additional cellular processes, such as
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Fig. 3 Dysregulated circRNAs may disrupt different mechanisms associated with disease. (A) Dysregulated circRNA biogenesis in
schizophrenia may arise from altered regulation of RBPs due to schizophrenia-associated genetic variants in intronic regions, affecting circRNA
expression and downstream miRNA-mediated gene regulation. (B) Reduced CircNRXN1 expression may disrupt synapse formation and
transmission through several potential mechanisms, including impairments in RBPs or mRNA transport/scaffolding, altered miRNA sponging,
peptide translation, or modifications in intercellular communication by exosomes. However, these hypotheses remain to be tested. (C)
Reduced circHOMER1 expression in bipolar disorder is linked to loss of cognitive flexibility through a complex network of interactions
affecting glutamatergic synaptic transmission. A similar mechanism may also play a role in schizophrenia and other neurological disorders. (D)
In major depressive disorder, reduced circDYM expression increases miR-9 bioavailability, leading to downregulation of HECTD1. This, in turn,
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O. Hatzimanolis et al.

13

Molecular Psychiatry



subcellular localization and transport of RBPs, potentially impair-
ing neuronal differentiation and synaptic function. Furthermore,
some circRNAs may encode peptides with unknown functions,
adding further complexity to their contribution to schizophrenia
risk. These disruptions, resulting from altered circRNA expression,
likely contribute to broader functional impairments in neuronal
processes that are central to the pathophysiology of
schizophrenia.
The neurexin 1 (NRXN1) gene encodes a presynaptic cell

adhesion protein that interacts with a diverse repertoire of
postsynaptic proteins, playing essential role in the assembly and
maturation of synapses [241]. NRXN1 encodes two main isoforms
with several alternative splicing specifying different properties of
synapses [242]. Several studies have identified recurrent structural
genetic variations within the NRXN1 locus in schizophrenia
patients, including intronic deletions and other mutations
[243–245]. These genetic variations may disrupt sequence
patterns recognized by RBPs like QKI or ADARs, potentially
changing the kinetics of circRNA and mRNA production. Thus,
the dysfunctions associated with NRXN1 mutations in schizo-
phrenia may also extend to the regulatory roles of NRXN1
circRNAs, further contributing to dysregulation of synapse
formation and transmission (Fig. 3B). Interestingly, the insulin-like
growth factor 1 receptor (IGF1R) gene encodes a tyrosine kinase
activated by a hormone called IGF1 similar in chemical structure to
insulin. IGF1R circRNAs were also found to be reduced in the
peripheral blood of schizophrenia patients [232], suggesting its
potential as blood-based marker with similar expression profile in
brain tissue. IGF1R mRNA was found to be reduced in brain tissue
from subventricular zone of schizophrenia patients potentially
impairing the ability of neural stem and neuronal progenitor cells
to respond to IGF1 during neurogenesis [246].
A recent study identified reduced expression of a circRNA

derived from HOMER1 gene (circHOMER1) in the DLPFC of patients
with schizophrenia and bipolar disorder [223]. In this study,
circRNAs were detected and quantified using a circRNA microarray
panel containing 13,617 probes targeting backsplice junctions,
designed based on multiple RNA-seq datasets CircHOMER1 was
prioritized for functional validation in mouse models and human
neuronal cultures derived from patient-induced pluripotent stem
cells (iPSCs). In these iPSC-derived neuronal cultures, circHOMER1
expression was consistently reduced. Functional studies in mouse
models revealed that circHOMER1 competes with the HOMER1B
mRNA isoform, which encodes a protein essential for synaptic
plasticity and glutamate neurotransmission. The HOMER1B protein
interacts with Group1 metabotropic glutamate receptors (GRM5)
and anchoring proteins such as SHANK2 (SH3 and multiple ankyrin
repeat domains 2) to regulate calcium signaling in excitatory
synapses via N-Methyl-D-aspartate receptors (NMDAR) [247, 248].
Additionally, circHOMER1 was shown to directly interact with the
3′UTRs of HOMER1B isoform, as well as with ELAVL4, an RBP
predominantly expressed in differentiated neurons. ELAVL4 is
crucial for the transport and synaptic localization of circHOMER1
[150, 223] (Fig. 3C). Notably, circHOMER1 expression was
consistently reduced in the DLPFC and orbitofrontal cortex
(OFC) of bipolar disorder patients, suggesting potential shared
mechanisms between schizophrenia and bipolar disorder. Its
functional roles are further discussed in the following section,
focusing on insights derived from mouse and human stem-cell-
based assays.

Bipolar disorder
Bipolar disorder (BD) is a highly heritable and complex polygenic
condition characterized by diverse symptoms, including mania,
depression, and hypomania. The intricate nature of bipolar
disorder represents a significant challenge for the development
of appropriate molecular and genetic models [249–251]. A recent
GWAS involving 41,917 BD cases and 371,549 controls identified

64 loci associated with the disorder [252]. As with other GWAS
findings, most identified SNPs are in non-coding regions (94%),
with a substantial proportion in intronic regions (64%), which may
influence the regulation of circRNA expression [252]. These
regulatory SNPs could potentially lead to the gain or loss of
circRNA function by affecting their biogenesis or interactions
with mRNAs.
A recent study reported 33 differentially expressed circRNAs (26

downregulated and 7 upregulated) in the peripheral blood cells of
19 BD patients compared to 20 unaffected controls [234]. Another
study identified 94 differentially expressed circRNAs (44 down-
regulated and 50 upregulated) in the peripheral blood cells of 20
patients compared to 20 unaffected controls [253] However, direct
comparisons between these studies are limited, as the latter study
did not include a summary table detailing the differential
expression of circRNAs and their corresponding host gene
annotations. A meta-analysis integrating these datasets could
provide a more robust understanding of circRNA dysregulation in
bipolar disorder.
Several studies have reported differences in circRNA expression

profiles in the prefrontal cortex regions of bipolar disorder
patients, including DLPFC, OFC [223], anterior cingulate cortex
(ACC) [254] and medial frontal gyrus (MFG) [255]. These regions
play critical roles in cognitive, emotional, and executive functions.
Even subtle dysfunctions in these interconnected neuronal
networks can disrupt their coordinated activity, contributing to
the development of mental health disorders. Comparing these
studies, 45 genes produce circRNAs dysregulated in at least two
brain regions. Interestingly, one gene, NALCN (sodium leak channel,
non-selective), was found to express a circRNA dysregulated in
different brain regions and cohorts, albeit with discordant
direction (downregulated in OFC [223] and upregulated in MFG
[255]). NALCN is a voltage-gated ion channel responsible for the
regulation of Na+ permeability to control neuronal excitability
[256]. However, the functional role of circNALCN in the nervous
system and its association with BD remains unknown.
Of particular interest is a circRNA derived from the HOMER1

gene, circHOMER1, which is consistently downregulated in the
DLPFC and OFC of BD patients [223]. Genetic variation in the
HOMER1 locus near a distal enhancer region (rs6865469,
p= 1.65e–08) is significantly associated with bipolar disorder
[252]. How this variation in the HOMER1 regulatory region affects
circRNA biogenesis remains unclear. Human stem cell-based
assays with CRISPR knock-in and knockout approaches to
generate stem cell lines with different allelic combinations could
help elucidate the effect of these genotypes on circRNA
expression. CircHOMER1 is also reduced in iPSC-derived neuronal
cultures from BD patients. In vivo knockdown of circHOMER1 in
the OFC of mice alters the expression of the HOMER1B mRNA
isoform and numerous alternative transcripts from genes involved
in synaptic plasticity and psychiatric disorders [223].
Bipolar disorder patients often struggle with adapting their

behavior to changing circumstances, a deficit perceived as
impaired cognitive flexibility. In mice, reduced circHOMER1
expression in the OFC impairs behavioral flexibility, as demon-
strated in a reversal learning test [150]. The mechanism of action
for circHOMER1 in both schizophrenia and bipolar disorder
appears to involve its direct interaction with the 3′ UTR of
HOMER1B mRNA and the sequestration of ELAVL4, an RBP
required for HOMER1B expression in the synapses (Fig. 3C). The
regulation of RNA processing into linear and circular RNA isoforms
depends on the profile of RBPs expressed in each brain regions
and cell type, as well as the genetic variations associated with
each disorder, potentially underlying the disease-specific patterns
of coding and non-coding RNA signatures.
Another study identified circCCNT2 upregulated in the ACC of

13 BP patients when compared to 13 neurotypical controls, a
finding replicated in an independent cohort of 24 patients and 27
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controls [254]. The CCNT2 (cyclin T2) gene encodes a cyclin protein
that regulates CDK9 (cyclin dependent kinase 9) activity, promot-
ing the phosphorylation of RNA polymerase II and other
transcription factors [257]. Bioinformatic predictions suggest that
circCCNT2 may interact with over 25 RBPs and potentially serve as
a sponge for miR-877-5p, which is predicted to target genes
involved in synapse formation. However, these hypotheses require
experimental validation. Interestingly, circCCNT2 expression is
reduced in B lymphoblastoid cells from patients following lithium
treatment, whereas no change is observed in unaffected controls
[257]. The authors propose circCCNT2 as a potential alternative
treatment target for patients who experience adverse effects or do
not respond to lithium therapy [254]. Although preliminary, these
findings provide compelling evidence for circCCNT2’s role in BD
and its potential utility in developing novel therapeutic
approaches

Major depressive disorder
Approximately one in five individuals will be affected by major
depressive disorder (MDD) during their lifetime [258, 259]. MDD
has a heritable component, with up to 37% of the risk explained
by genetic variation across at least 44 risk loci [260], however it is
more likely to result from a combination of environmental and
genetic factors. High comorbidity with other psychiatric disorders
as well as differences in personality, sex, and age, also contribute
to the risk of developing MDD [261]. Due to the intricate interplay
between genes, environmental factors, and the limited under-
standing of the underlying molecular mechanisms, treatment for
MDD is often suboptimal. This underscores the need to explore all
potential avenues, including the contribution of both protein-
coding and non-coding genes, to identify gene networks and
molecular mechanisms associated with the disorder. While some
studies suggest that circRNAs may play a role in MDD, the
evidence remains limited, though some investigations have
started to uncover their potential involvement in the disease
pathology [220, 221, 262–265].
A recent study suggests that a circular RNA derived from exons

4, 5 and 6 of the DYM (dymeclin) gene (circDYM) could serve as a
novel therapeutic target for MDD [266]. CircDYM was found to be
downregulated in the peripheral blood of MDD patients, as well as
in the plasma and hippocampus of two depressive-like mouse
models. Overexpression of circDYM in mice ameliorated
depressive-like symptoms, indicating its potential therapeutic
relevance. The study reveals that circDYM functions as a sponge
for miR-9, regulating downstream miR-9 target genes, including
HECTD1 (HECT domain E3 ubiquitin protein ligase). Reduced
circDYM expression leads to increased bioavailability of miR-9,
resulting in the downregulation of HECTD1. This, in turn, reduces
HSP90 ubiquitination, which promotes microglial activation and
enhances neuroinflammation. Further supporting these findings,
previous studies have demonstrated increased miR-9 expression
in the nucleus accumbens and striatum of a depressive-like mouse
model [267, 268]. Additionally, neurons exporting miR-9-
containing exosomes that promote M1 polarization in microglia,
leads to the release of proinflammatory cytokines [269]. These
findings highlight a potential mechanism by which circDYM
downregulation exacerbates neuroinflammation by increasing
miR-9 activity, leading to dysregulation of microglial function
(Fig. 3D).
Recent investigations have revealed changes in circRNA

expression in depressive-like animal models following treatment
with antidepressant compounds, including traditional Chinese
medicine [270] and plant-derived therapies [262]. One study
demonstrated alterations in circRNA expression profiles in a
depressive-like rat model treated with Xiaoyaosan (XYS), a
traditional Chinese medicine formula with known antidepressant
effects. Rats exhibiting depression-like behaviors and treated with
XYS showed differential expression of 28 circRNAs [270]. XYS

treatment improved depression symptoms by increasing locomo-
tor activity and sucrose preference while reducing immobility time
during forced swimming tests. Additionally, XYS attenuated
synaptic loss in the hippocampus, potentially through modulation
of the PI3K/Akt signaling pathways, a well-established target of
conventional antidepressants. However, the identities of affected
circRNAs and the precise mechanisms by which XYS influences
their expression remain largely unknown [270].
In another study, a depressive-like mouse model was treated

with geniposide (GP), a plant-derived compound. GP restored the
expression of circ_0008405 (homolog of circPBX1), a circRNA that
was downregulated in depressive-like mice, leading to ameliora-
tion of depression-like symptoms. Circ_0008405 acts as a miRNA
sponge for miR-25-3p, increasing the expression of its target
genes, including Gata2 [262]. Interestingly, a previous study found
that overexpression of human GATA1 and GATA2 induced
depressive behavior in rats [271]. These findings suggest that
dysregulation of circRNA expression, such as the reduction of
circ_0008405, contributes to depressive-like behaviors. Treatment
with GP not only normalized circRNA expression but also
ameliorated depression-like symptoms, highlighting the thera-
peutic potential of targeting circRNA networks to treat depression.

Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by the aggregation of hyperphosphory-
lated tau protein into intracellular neurofibrillary tangles and
amyloid beta (Aβ) peptide into extracellular plaques. These
pathological changes lead to memory loss, cognitive decline,
and impairment in executive functions [272, 273]. AD is a complex
multifactorial condition with a broad spectrum of manifestations,
ranging from early-onset cases – frequently associated with rare
autosomal dominant mutations in APP (amyloid beta precursor
protein), PSEN1 (presenilin 1) and PSEN2 (presenilin 2) genes – to
late-onset sporadic cases, which are associated with common
alleles of small effect sizes that in aggregation contribute to
genetic susceptibility to AD [274, 275]. Dysregulated ncRNAs,
including circRNAs, have been implicated in the regulation of
amyloid plaque formation and progression, playing critical roles in
AD pathophysiology [276, 277]. These findings suggest that
circRNAs may influence key molecular pathways underlying AD,
providing opportunities for therapeutic intervention. Numerous
studies have also highlighted the role of circRNAs in the etiology
and severity of AD [126, 278–281], and some circRNAs have been
proposed as potential biomarkers for diagnosing and monitoring
the progression of AD in studies using peripheral blood cells,
plasma, and cerebrospinal fluid [282–286].
A meta-analysis has provided an atlas of circRNA expression

changes in cortical regions of AD patients, revealing significant
correlations with clinical and neuropathological traits of AD [278].
This analysis identified 164 circRNAs dysregulated in the brains of
AD patients, several of which are co-expressed with AD-associated
genes involved in brain hypometabolism and clinical traits. In
particular, circHOMER1 is significantly downregulated in AD
patients and strongly correlates with disease severity as indicated
by the clinical dementia rating and Braak score – a measure of AD
severity based on distribution and density of neurofibrillary tau
tangles in the brain. Furthermore, circHOMER1 contains multiple
putative binding sites for miR-651, a miRNA predicted to target
key AD-associated genes, including PSEN1 and PSEN2 [278].
Reduced circHOMER1 expression increases miR-651 bioavailability,
enhancing miRNA-mediated suppression of PSEN1 and PSEN2,
potentially impairing γ-secretase activity, which is essential for
amyloid beta processing (Fig. 3E). In contrast, circCORO1C is
upregulated in AD patients and associated with clinical traits and
AD-associated genes including APP. Acting as a sponge for miR-
105, circCORO1C reduces miR-105 bioavailability, leading to
increased APP expression, which may exacerbate amyloid plaque
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formation and synaptic dysfunction (Fig. 3F). These findings are
supported by independent studies and illustrate the potential
regulatory roles of circHOMER1 [287–289] and circCORO1C
[283, 288] in AD pathogenesis.
A circRNA derived from the APP gene (circAβ) has been

identified in the prefrontal cortex of AD patients [126]. CircAβ
encodes a novel 175-amino acid amyloid beta polypeptide, which
can be processed into amyloid beta peptides, suggesting an
alternative pathway for amyloid beta biogenesis (Fig. 3G). Another
circRNA, circPSEN1, is upregulated in AD patients [290] and is
proposed to act as a sponge for miR-4668-5p and miR-5584-5p.
These miRNAs regulate genes involved in TGF-β1 and Notch
signaling pathways, which are critical to AD progression
[291–293]. Interestingly, autosomal dominate AD studies have
revealed circPSEN1 isoform dysregulation without changes in
PSEN1 mRNA expression [294].
Overexpression of circRIMS2 in the hippocampus of an AD

mouse model caused a reduction in dendritic spine density and
memory deficits [281]. Amyloid β was found to enhance METTL3-
dependent m6A modification of circRIMS2, increasing its stability
and promoting more efficient sponging of miR-3968. Mir-3968 is
known to inhibit UBE2K (ubiquitin conjugating enzyme E2 K)
expression, which can alter synaptic transmission via ubiquitina-
tion of GRIN2B (glutamate ionotropic receptor NMDA type subunit
2B) protein. Increased circRIMS2 expression resulted in more
UBE2K activity, leading to increased ubiquitination and degrada-
tion of GRIN2B protein, causing synaptic dysfunction
[281, 295, 296]. Co-overexpression of miR-3968 and circRIMS2 in
mouse model restored dendritic spine density and memory
performance to healthy-like levels. Interestingly, RIMS2 mRNA
levels were consistently downregulated in the hippocampus of AD
patients across multiple independent studies [297–299], suggest-
ing AD-specific splicing disruptions at the RIMS2 locus [300].
Aberrant splicing, possibly caused by a 5′ splice site variant, has
been implicated in exon skipping and nonsense-mediated mRNA
decay [301]. These findings highlight the multifaceted impact of
circRIMS2 dysregulation on synaptic function and its potential role
in AD pathophysiology.

Parkinson’s disease
Parkinsons disease (PD) is the second most common neurode-
generative disorder globally, with its prevalence increasing
significantly with age. The disease manifests with a combination
of motor symptoms, including tremors, bradykinesia, and rigidity,
and non-motor symptoms, such as cognitive impairment, sleep
disturbances, and autonomic dysfunction. PD is typically char-
acterized by the progressive loss of dopaminergic neurons in the
substantia nigra and the accumulation of protein aggregates
containing α-synuclein [302, 303]. A large-scale multi-ancestry
meta-analysis of GWASs identified 78 independent risk loci
associated with PD, with the majority of genetic variations (95%)
occurring in regulatory non-coding regions [304]. Notably, this
includes variations in genes expressing circRNAs, such as the α-
synuclein (SNCA) gene, which plays a central role in PD
pathogenesis. Emerging evidence suggests that circRNAs may
serve as biomarkers for diagnosis and assessment of PD severity
[305–310]. Furthermore, other studies have investigated the
involvement of circRNAs in key pathogenic mechanisms, including
their regulation of α-synuclein aggregation, neuroinflammation,
apoptosis, autophagy, and mitochondrial dysfunction, with much
of this research conducted using animal and cell models of PD
[27, 311–321].
A study involving 300 PD patients and 100 healthy controls

identified circulating cell-free circRNA as potential plasma
biomarkers for PD [322]. Two diagnostic panels were developed:
one consisting of two circRNAs (circARID1B and cir-
cTCONS_l2_00002816) demonstrated high sensitivity and specifi-
city for early diagnosis of PD, while a second panel, comprising

four circRNAs (circFAM83H, circHUWE1, circARID1B and cir-
cTCONS_l2_00002816), was able to differentiate late-stage from
early-stage PD [322]. Another novel biomarker and potential
therapeutic target for PD, circEps15, was recently identified in
both human and animal studies [317]. This circRNA was found to
be downregulated in the plasma of PD patients and significantly
correlated with disease progression. Consistent with patient
findings, reduced circEps15 expression was observed in plasma
and midbrain samples from a chemically induced mouse model of
PD. Overexpression of circEps15 in these mice and SH-SY5Y cells
was found to promote dopaminergic recovery in vitro through
improved mitochondrial function. Mechanistically, circEPS15
functions as a miR-24 sponge promoting stable expression of
target gene PINK1 thus enhancing PINK1-PRKN-dependent mito-
phagy to eliminate damaged mitochondria and maintain mito-
chondrial homeostasis in neurons [317].
A study reveals that circRNAs tend to accumulate in an age-

dependent manner in several brain regions in healthy individuals
but in PD patients this correlation is lost in substantia nigra where
total number of circRNAs is reduced [313]. In contrast, the same
study reports that circSLC8A1 increases in the substantia nigra of
PD patients and in cultured cells exposed to oxidative stress
induced by Paraquat. CircSLC8A1 carries several binding sites for
miR-128 and identified to interact with AGO2. This strongly
suggests this circRNA functions as a sponge affecting the
expression of miR-128 target genes. However, the exact functional
impact caused by miR-128 sponging remains unknown.
Other studies in animal and cell line models identified several

dysregulated circRNAs, such as circSNCA [311], circPANK1 [316],
circHIPK3 [319], circHIVEP2 [321], circDLGAP4 [314] and cir-
cSAMD4A [315]. All these circRNA are proposed to function as
miRNA sponges affecting biological pathways associated with PD
such as α-synuclein aggregation, neuroinflammation and degen-
eration, and mitochondrial dysfunction. Notably, circPANK1 and
circSNCA are proposed to function as miR-7 sponges and found
upregulated in PD mouse and cell models. One such cell model
using SH-SY5Y cells treated with a neurotoxin (1-Methyl-4-
phenylpyridinium) found increased circSNCA expression [311].
CircPANK1 was found to be upregulated in the substantia nigra of
a PD mouse model treated with rotenone, another compound
used to mimic key pathological traits of disease [316]. Increased
expression of these two circRNAs upregulates α-synuclein SNCA
protein expression by reducing miR-7 bioavailability and enhan-
cing the expression of target genes, such as SNCA, thus increasing
risk of SNCA aggregation and neurodegeneration of dopaminergic
neurons [311, 316] (Fig. 3H).

POTENTIAL CLINICAL APPLICATIONS OF CIRCRNAS
The stability, specificity, and abundance of circRNAs render them
as not only potentially diagnostic tools but also as novel
therapeutic targets. The aberrant expression and resulting
dysregulation in normal functioning of circRNAs in neurological
conditions is becoming a more prominent area of research, with
fascinating discoveries being made. In the last two decades, new
insights have been made into circRNA and their interplay with
regulatory mechanisms that underpin complex and typically
highly polygenic neurological conditions such as schizophrenia,
bipolar disorder, depression and as well as neurodegenerative
conditions like Alzheimer’s disease and Parkinsons disease. One of
the most compelling aspects of circRNAs for studying neurological
conditions lies in their abundant expression in the brain [29, 59],
where they are highly expressed in neuronal cells comparatively
to other cell types, as well as other cell-type specific expression
patterns [25]. CircRNAs are also highly stable, have unique
transcript sections across backsplice junction region, and tend to
have low immunogenicity, all of which are features that can aid in
developing more robust RNA based therapeutics [13, 209, 233].
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As detecting circRNAs has become more streamlined, plasma
derived circRNAs have also shown promise for developing
diagnostic biomarkers and panels dedicated for early detection
and monitoring of neurological conditions [221, 322–324]. The
versatility of circRNAs as biomarkers in neurological conditions is
underscored by their presence in cerebrospinal fluid, offering a
valuable diagnostic window into central nervous system milieu
[324, 325]. New possibilities for leveraging circRNAs as potential
biomarkers in neurological conditions are also being determined
in urine and saliva [265, 326], presenting additional non-invasive
avenues for biomarker discovery in neurological conditions. There
has also been some research into circRNA nanoparticle delivery
platforms, viral and lipid based, with limited success as the
immense complexity of the brain not just in structure but also
function has proven quite challenging [327–330]. Additionally,
synthetically produced circRNAs aptamers could also be used as a
therapeutic themselves to help modulate conditions associated
with protein dysfunction such as neurodegenerative conditions
[331].
Given that some circRNAs present regulatory patterns enabling

their translation into protein sequences [124, 128–132, 332], a
comprehensive understanding of the mechanisms underlying
their translational capability could facilitate the development of
more stable and effective RNA-based therapies. CircRNAs offer
advantages over mRNA treatments, including enhanced stability,
prolonged translation duration, and reduced immunogenicity.
Recently, circRNA-based vaccines have been proposed as innova-
tive strategies for achieving durable and effective expression of
viral and cancer antigenic proteins. Examples include circRNAs
encoding the SARS-CoV-2 spike protein [333] and charge-altering
releasable transporter (CART)-encapsulated circRNAs encoding
antigens against targeting cancers [334].

CHALLENGES AND FUTURE DIRECTIONS
Research into circRNAs is still in early stages, particularly regarding
their clinical applications in neurological conditions. The high
stability of circRNAs compared to mRNA and their cell-specific
expression profiles in neurodevelopment and normal brain
function make them promising candidates for diagnostics and
therapeutics. Using circRNAs as biomarkers for diagnostics may be
attainable with machine learning methods and larger sample sizes
profiling various biofluids and cellular biopsies, such as serum,
saliva, cerebrospinal fluid, and patient-derived cells and tissue
cultures. However, the precise mechanisms and impact of circRNA
functions in brain homeostasis, as well as their contributions to
the etiology of neuropsychiatric and neurodegenerative condi-
tions, require further investigation before their clinical application
in therapies can be realized. Moreover, targeting specific brain
regions for treatment poses significant challenges, such as
overcoming the blood-brain barrier and developing cost-effective,
targeted delivery systems for circRNA.
RNA sequencing remains the predominant method for circRNA

identification; however, a lack of standardized protocols and
detection tools limits precision and specificity [169]. The absence
of standardized nomenclature for circRNAs further complicates
research communication and replication. Databases such as
circBank [153] have incorporated conversion tools to address this
issue but incomplete reporting of circRNA transcript lengths, often
due to short-read sequencing limitations, persists as a significant
challenge. Long-read sequencing technologies, coupled with
advanced bioinformatic tools like CIRI-long [176], are beginning
to overcome these limitations, enabling precise determination of
circRNA structures, interaction sites, and functional roles.
Developing effective and standardized diagnostic biomarkers for

neurological conditions has been notoriously difficult. Despite
promising studies identifying circRNAs as potential biomarkers,
most findings are based on small sample sizes and limited datasets.

The intricate nature of gene expression profiles in the brain and the
lack of standardized protocols poses a major hurdle in clinical
applications [270, 288, 325, 335]. Larger-scale cohorts and more
robust experimental models are required to develop reliable
diagnostic panels. Patient-derived neuronal cultures, brain orga-
noids, and animal models offer powerful tools for characterizing
circRNA functions and evaluating whether circRNA biogenesis is
globally impaired or restricted to specific cell types and brain
regions. These models can help elucidate how circRNA dysregula-
tion contributes to clinical features of various neurological disorders.
Importantly, some circRNAs have demonstrated potential for

early diagnosis or for predicting disease severity [234, 322, 336].
However, the diversity in patient populations and the cell-specific
regulation of circRNA expression require stringent standardization
of sample types, biofluids, and cell sources. Combining circRNA
biomarkers with other molecular modalities, such as miRNAs and
mRNAs could lead to the development of effective diagnostic
panels. Ongoing research is uncovering pathways related to
circRNA function and biogenesis, highlighting their potential as
biomarkers and therapeutic targets. A recent study demonstrated
the biological relevance of circRNAs by creating a circRNA-
deficient mouse model in which the splice acceptor site for
circTulp4 was specifically mutated without affecting the expres-
sion of Tulp4 mRNA or protein [83]. This study elegantly
demonstrates that circTulp4 plays a critical role in excitatory
neurotransmission and sensitivity to aversive stimuli, showing the
importance of circRNAs in regulating neuronal functions.
While this study demonstrated that certain regulatory patterns

can be modulated to disrupt circRNA expression without affecting
the host gene mRNA, canonical splice acceptor-donor sites cannot
always be altered without interfering with mRNA splicing. An
alternative approach could involve a more detailed investigation
into circRNA-specific motif pattern associated with RBPs and co-
factors that are directly linked to circRNA backsplicing mechan-
isms. Understanding these molecular interactions and the precise
mechanisms controlling when and how circRNAs are processed
could pave the way for novel experimental strategies. These
approaches would enable the functional role of circRNAs to be
specifically validated, independently of their host gene mRNA,
offering deeper insights into their distinct regulatory capabilities.
One significant hurdle to RNA-based therapies, including those

involving circRNAs, is the lack of effective delivery systems for synthetic
RNAs targeting specific brain cells. Moreover, the stability and toxicity
of RNA sequences in human organs and tissues, including the brain,
will require substantial advancements in medicinal chemistry before
safely moving forward into clinical trials. Promising progress is being
made in delivery mechanisms, including nasal spray formulations,
ultrasound-based techniques, and vasoactive agents, which may help
overcome the blood-brain barrier [191, 337]. Furthermore, the
hydrophilic and negatively charged nature of RNA molecules poses
several challenges for cellular uptake, emphasizing the need for
innovative delivery technologies.
Due to their ability to encode functional peptides, superior

stability, and extended lifespan compared to mRNAs, circRNAs
offer a promising platform for advancing RNA therapeutics. They
hold potential as a powerful tool for pharmaceutical peptide
production and gene therapy applications. By overcoming existing
challenges related to delivery, stability, and characterization,
circRNAs could unlock significant opportunities for individualized
therapies of neurological disorders. Translating circRNA research
into practical clinical applications could drive the development of
innovative diagnostics and therapeutics, addressing critical gaps
in the personalized treatment of neurological conditions.

CONCLUSION
Significant advancements have been made in uncovering the
functional roles, biogenesis, and molecular mechanisms of
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circRNAs in neurological dysfunction. These advancements
include neuropsychiatric conditions such as schizophrenia, bipolar
disorder, and major depressive disorder, as well as neurodegen-
erative conditions like Alzheimer’s and Parkinson’s disease.
Insights into the spatio-temporal expression and functional
dynamics of circRNAs in these conditions are fostering the
development of potential clinical applications. The findings
discussed in this review illustrate the intricate regulatory roles
circRNAs play in neurological conditions, particularly through
interactions with miRNAs and RBPs. Select circRNAs have
demonstrated functional effects in model organisms, elucidating
their involvement in key neurological pathways. The polygenic
nature of these disorders, coupled with their interplay with
environmental factors, underscores the need for more advanced
model systems. Patient-derived stem cells and differentiated
neuronal tissues also offer a promising avenue for identifying
novel mechanisms and therapeutic targets, providing valuable
insights into human-specific phenotypes. Thus, the role of
circRNAs, as non-coding regulatory molecules, represents a
transformative shift in our understanding of neurological dis-
orders. Their unique properties and regulatory roles hold promise
for the development of more effective diagnostic tools, biomar-
kers, and therapeutic interventions. This evolving field offers new
hope in addressing the complexities of neurological disorders,
potentially paving the way for innovative, personalized
approaches to treatment and management.
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